

AZDYE 555 AZIDE

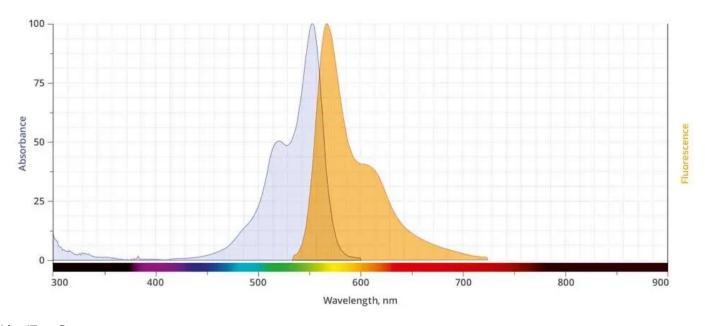
SKU: CCT-1287

$$O_3S_{\odot}$$
 O_3S_{\odot}
 O_3H
 O_3S_{\odot}
 O_3H

Description

AZDye[™] 555 Azide is a water-soluble, bright orange-fluorescent dye with excitation ideally suited for the 532 nm or 555 nm laser lines and visualized with TRITC (tetramethylrhodamine) filter sets. AZDye[™] 555 conjugates of antibodies, peptides, and proteins are pH insensitive from pH 4 to pH 10. The brightness and photostability of this dye are best suited to direct imaging of low-abundance targets.

AZDye[™] 555 Azide can be reacted with terminal alkynes via a copper-catalyzed click reaction (CuAAC). It also reacts with strained cyclooctyne via a copper-free "click chemistry" reaction to form a stable triazole and does not require Cu-catalyst or elevated temperatures. The brightness and photostability of this dye are best suited to direct imaging of low-abundance targets.


AZDye[™] 555 is structurally similar to Alexa Fluor® 555, and spectrally is almost identical to Cy3 Dye, Alexa Fluor® 555, CF® 555 Dye, or any other Cyanine3 based fluorescent dyes. AZDye[™] 555 Azide can be used a less expensive alternative to Alexa Fluor® 555 Azide.

For research use only. Not intended for therapeutic or diagnostic use in animals or humans.

Telephone: (650) 697-3600

Abs/Em Spectra

Specifications

Unit Size 1 mg, 5 mg, 25 mg

Abs/Em Maxima 555/572 nm

Extinction Coefficient 155,000

Flow Cytometry Laser Line 532 nm or 555 nm Microscopy Laser Line 532 nm or 555 nm

Spectrally Similar Dyes Alexa Fluor® 555, CF® 555, DyLight® 549, Cy3 Dye

Molecular weight 915.08 (protonated)

CAS N/A

Solubility Water, DMSO, DMF

Purity >95% (HPLC)

Appearance Red solid

Storage Conditions -20°C. Desiccate

Shipping Conditions Ambient temperature

For research use only. Not intended for therapeutic or diagnostic use in animals or humans.